1. Given the following function that evaluates a polynomial whose coefficients are stored in an array:
```
double evaluate(double[] coefficients, int n, double x)
    double result = coefficients[0];
    double power = 1;
        for (int i = 1; i < n; i++)
            power = power * x;
            result = result + coefficients[i] * power;
        return result;
```

Let n be the length of the array. Determine the number of additions and multiplications that are performed in the worst case as a function of n.
2. Suppose the number of steps required in the worst case for two algorithms are as follows:

- Algorithm 1: $f(n)=3 n^{2}+5$
- Algorithm 2: $g(n)=53 n+9$

Determine at what point algorithm 2 becomes more efficient than algorithm 1.
Consider the following iterative function for problems 3 and 4.

```
int triangular(int n)
{
int result = 0;
for (int i = 1; i <= n; i ++)
result += i;
return result;
}
```

3. Rewrite the function triangular using recursion and add preconditions and postconditions as comments.
4. Prove by induction that the recursive function you wrote in the previous problem is correct.
